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A study was performed using direct numerical simulation to examine the interaction of
external turbulence with a nominally columnar, large-scale vortex at a vortex Reynolds
number ReV ≡ Γ/ν = 3000. A multi-step procedure is used to generate initial condi-
tions in which the external turbulence has the wrapped, nearly azimuthal form charac-
teristic of turbulence around a large-scale vortex structure. The proper-orthogonal
decomposition method is used to extract specific modes of the vortex turbulence that
dominate the kinetic energy and enstrophy fields. The effect of turbulence initial inten-
sity and length scale on the turbulence structure and its influence on the large-scale
vortex are examined. It is observed that the external turbulence wraps around the
large-scale vortex and advects radially inward toward the vortex core. The dominant
axial length scale of the external turbulence appears to scale with the vortex core
diameter, with the mode with the largest enstrophy having a wavelength of about twice
the core diameter. The turbulence induces a bending wave on the vortex core with
axial wavelength approximately equal to the dominant wavelength of the external
turbulence. The turbulent enstrophy decays according to a power-law expression
for cases with moderate initial turbulence intensity. For sufficiently strong initial
turbulence intensity, the turbulence breaks up the large-scale vortex core, creating
strong turbulence within the vortex core.

1. Introduction
Most high-Reynolds-number flows are dominated, at some scale, by tube-like vortex

structures. In some applications these vortex structures dominate the mean flow field,
as is the case for airfoil tip vortices, ship and airplane hull vortices, juncture vortices
about pilings of control surfaces, pump-intake vortices, and helicopter rotor and
propeller wake vortices. In a large number of other flows, these vortex structures
might not be readily observable in the mean flow field but may nevertheless dominate
turbulence at a slightly smaller scale. For instance, tube-like coherent vortices
control turbulent species mixing rates, heat transfer, turbulence production rates,
and momentum transport in turbulent wall layers, mixing layers, jets, and bluff-body
wakes. While there are several instabilities that may lead to breakup of large-scale
vortices (e.g. Crow 1970; Lessen, Singh & Paillet 1974), interaction of vortices with
small-scale external turbulence is known to dominate vortex breakup and decay
in certain situations where the external turbulence is sufficiently strong (Tombach
1973; Liu 1992). Understanding the interactions of large-scale vortex structures with
surrounding smaller-scale turbulence is crucial for modelling turbulence physics, in
addition to development of new methods for control of high-Reynolds-number fluid
flows occurring in many engineering applications.
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There have been several computational and experimental studies of vortex–
turbulence interaction, a review of which is given by Marshall & Beninati (2000).
A flow visualization study by Sarpkaya & Daly (1987) observed intermittent vortex
‘bursting’ when a vortex is exposed to grid-generated turbulence in a water flume. A
wind-tunnel study by Bandyopadhyay, Stead & Ash (1991) examined interaction of
a large-scale columnar vortex generated by a pair of oppositely pitched airfoils with
turbulence generated by an upstream screen or grid. They observed that the core fluid
of the columnar vortex is intermittently ejected outward, and that this exchange of
fluid and momentum is controlled by organized vortical motions that wrap around the
vortex just outside the core. Bandyopadhyay et al. (1991) also observe that there exist
intermittent patches of highly turbulent and relaminarized fluid in the columnar vortex
core. The relaminarization is hastened by suppression of turbulence by the solid-body
rotation within the vortex core (Bradshaw 1969), and the intermittent high-turbulence
patches are probably a result of interaction of the vortex with external turbulence.

A recent wind-tunnel study of vortex interaction with external turbulence by
Beninati & Marshall (2005) used a four-sensor miniature hot-wire probe to examine
the various spectral components of the turbulence and vortex response. The vortex
is generated in this study using a four-blade vortex generator with a central hub,
which is specifically designed to minimize introduction of upstream perturbations
leading to vortex wandering. The study observes significant turbulent kinetic energy
within the central part of the vortex core, even far downstream of the generation
point. This turbulence within the central core appears to be dominated by a bending
wave with wavelength ranging from 1 to 3 times the core diameter, in agreement
with the flow visualization results of Bandyopadhyay et al. (1991). Measurements at
different downstream locations indicate that these bending waves are induced by the
turbulence, rather than propagated from an upstream location.

Melander & Hussain (1993a, b) used direct numerical simulation (DNS) to examine
interaction between a columnar vortex and initially homogeneous small-scale turbu-
lence. For cases where the turbulence strength is sufficiently low, they observed that the
external turbulence structures wrap around the columnar vortex, forming nearly azi-
muthally oriented rings with azimuthal vorticity of approximately alternating sign as
one progresses axially along the core. When the initial turbulence strength is somewhat
higher, Melander & Hussain observed that bending waves form on the large-scale
vortex. For still stronger magnitude of the initial homogeneous turbulence, the vortex
quickly breaks up in the computations. However, the vortex breakup in these compu-
tations is not representative of actual coherent vortex interaction with strong external
turbulence due to the fact that the vortex breakup occurs while the turbulence is still in
a small-scale, nearly homogeneous condition, rather than in the nearly axisymmetric
wrapped condition characteristic of turbulence surrounding a columnar vortex.

The process of vorticity ejection (or ‘stripping’) induced by external wrapped vortex
structures was examined by Marshall (1997) using a simplified axisymmetric model
consisting of periodically positioned vortex rings around a columnar vortex. It was
observed that weak vortex rings induce standing waves of variable core area on the
columnar vortex, whereas stronger vortex rings cause vorticity to be stripped and
advected radially outward from the columnar vortex in thin sheets that wrap around
the vortex rings. Miyazaki & Hunt (2000) used rapid-distortion theory (RDT) to
examine the process by which initially homogeneous turbulence becomes axisymmetric
and the interaction of this axisymmetric turbulence with a columnar vortex. The RDT
results were used to obtain insight into induction of a variety of different wave motions
on the columnar vortex by the external turbulence, including axisymmetric and
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bending waves, although the restriction to linear theory prohibited the computations
from examining the large-scale distortions and vorticity stripping processes that lead
to breakup of the large-scale vortex. Risso, Corjon & Stoessel (1997) reported a DNS
study of vortex pair decay in the presence of external turbulence which indicates
that the small-scale turbulence excites perturbations of the vortex pair that enhance
development of the mutual-induction instability.

The present paper reports a computational study of the effect of external turbulence
on an initially columnar vortex. Rather than starting with homogeneous turbulence,
we employ a multi-step initialization procedure leading to an initial state in which
the turbulence is wrapped around the large-scale vortex core, in the nearly azimuthal
form characteristic of turbulence in the vicinity of a large-scale columnar vortex. This
initial condition is achieved using a preliminary computation in which weak turbulence
wraps around a columnar vortex, followed by a procedure in which the columnar
vortex and a region surrounding the vortex is extracted, the external turbulence
strength is modified, and a new columnar vortex is introduced. The interaction of
the external turbulence with the initially columnar vortex is examined for different
turbulence strengths and length scales.

The numerical method used in the study is described in § 2, along with the procedure
for development of the turbulence initial condition. The structure of a vortex with
external turbulence is examined in detail in § 3 for a case with external turbulence
of moderate strength. We examine the structure of coherent vortices around the
turbulent vortex, physical processes occurring during vortex interaction with the
external turbulence, various turbulence averages generated by the turbulent vortex
structure, and the spectral variation of the energy and enstrophy fields of the vortex
turbulence. In § 4, we examine various mechanisms for enhancement and decay of
the vorticity field within the external turbulence. Analysis of the flow using proper
orthogonal decomposition (POD) is discussed in § 5, where it is used to extract
dominant wavenumber modes of the vortex turbulence. The effect of initial external
turbulence intensity and length scale on its interaction with the columnar vortex is
examined in § 6. Conclusions are given in § 7.

2. Numerical method
The computations are performed using a Fourier pseudo-spectral method similar to

that described by Vincent & Meneguzzi (1991), which employs second-order Adams–
Bashforth time stepping for nonlinear terms and exact integration of the viscous
term. The computations are dealiased using the standard two-thirds wavenumber
truncation. The spectral Navier–Stokes equation is evolved in time after having been
projected onto a divergence-free space using the operator Pij = kikj/k2 − δij , giving
(Vincent & Meneguzzi 1991)

ûn+1 = ûn exp(−νk2�t) + �t P ·
[

3
2
( ̂u × ω)n exp(−νk2�t) − 1

2
( ̂u × ω)n−1 exp(−2ν k2�t)

]
(1)

where u and ω are the velocity and vorticity vectors, a hat denotes Fourier transform,
a superscript indicates the time step, ν is the kinematic viscosity, �t is the time
increment, and δij is the Kronecker delta. The velocity and vorticity transforms are
related by

ω̂ = ik × û. (2)

One of the principal features of the current study is that the computations are
initialized by exposing an initially columnar vortex to turbulence that has the wrapped,
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Figure 1. Slices of the flow field in the (y, z)-plane showing contours of vorticity magnitude
at different stages of the flow initialization process: (a) flow at the end of the ‘initialization run’
and (b) initial condition for the ‘final run’ obtained by cutting out the vortex in (a), magnifying
the turbulence vorticity with fmagn = 2, making the vorticity field divergence-free, and adding
an unperturbed columnar vortex.

nearly axisymmetric structure characteristic of turbulence near a large-scale vortex,
rather than homogeneous turbulence. This effect is achieved using the following
initialization sequence:

Step 1: Introduce random velocity fluctuations, having root-mean-square velocity
fluctuation urms and uniform probability distribution for wavenumbers in
the range k1 <k <k2.

Step 2: Set vorticity equal to zero within a cylinder of radius a0,max along the x-axis.
Step 3: Introduce a columnar vortex of radius a0 <a0,max and strength Γ with axis

coincident with the x-axis (figure 1a).
Step 4: Perform an ‘initialization run’ out to a time t0 in order to let the turbulence

develop a form characteristic of that near a columnar vortex.
Step 5: Set vorticity equal to zero within a cylinder of radius amax along the x-axis.
Step 6: Increase the vorticity magnitude in the remaining external turbulence by a

factor fmagn.
Step 7: Introduce a vorticity field within the cut-off cylinder of the form

ωx = (Γ/πa2) exp(−r2/a2), (3)

corresponding to a columnar vortex oriented in the x-direction with core
radius a <amax and strength Γ (figure 1b).

Step 8: Compute the initial velocity field for the ‘final run’ by solving for û from
(2) and then taking the inverse fast Fourier transform.

After each step of this process, and at the end of each time step during the
computation, the velocity field is made divergence-free by taking its Fourier transform
and using the spectral form of the continuity equation, k · û = 0, and then the vorticity
is recomputed using (2) and the inverse transform is taken to obtain the corrected
vorticity and velocity fields in physical space.

Computational variables are non-dimensionalized using the vortex core diameter d

and the nominal vortex circulation Γn = (π/4) d2ω0,max to obtain a characteristic length
scale (d) and time scale (d2/Γn) for the flow. The vortex Reynolds number is fixed at
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Case k1 k2 fmagn

A 10 30 1
B 5 10 1
C 10 30 0.5
D 10 30 2
E 10 30 3
F 10 30 4

Table 1. Summary of computational cases examined, showing truncation wavenumbers of
the initial homogeneous turbulence used in the initialization procedure (k1 and k2) and the
magnification factor of the external turbulence (fmagn).

ReV = Γn/ν = 3000 for all computations. This value is about an order of magnitude
greater than the Reynolds number of coherent eddies in a turbulent boundary layer
for a typical laboratory-scale engineering experiment (Marshall 2003), and about four
orders of magnitude smaller than the Reynolds number of a typical airplane trailing
vortex. The average Kolmogorov length scale at the initial time of the computations
(following Step 8 above) is about equal to the grid increment �x = 0.05. Because the
axial vorticity of the vortex is chopped off at a radius amax = 0.65, the actual vortex
circulation is slightly less than unity (Γ = 0.815) . The value of urms chosen in Step 1
is sufficiently small that the external turbulence has a small effect on the columnar
vortex during the computation in Step 4 of the process. The principal differences in
the various computations are the turbulence magnification factor fmagn and the initial
wavenumber range (k1, k2) for the homogeneous turbulence. The time step for all
computations is �t = 0.01, resulting in a CFL number, umax�t/�x, of less than 0.1 for
all cases considered. The computation described in Step 4 of the initialization sequence
is carried out to a time t0 = 40, which is sufficient to let the external turbulence attain
an approximately axisymmetric structure typical of turbulence around a columnar
vortex without being so long as to allow significant degradation of the columnar
vortex by the surrounding turbulence. The computational results are not found to be
sensitive to the choice of t0. A listing of the parameter values for all runs performed

is given in table 1. The profiles of the turbulent kinetic energy, u′2 ≡ u′2
x + u′2

r + u′2
θ , at

the initial time of the final run (following Step 8) for all cases considered are plotted
in figure 2.

All computations are performed on a rectangular 128 × 256 × 256 domain with side
length 2π in the x-direction and 4π in the y- and z-directions. The boundary conditions
are periodic on all sides. Tests were conducted with double the domain length in the
x-direction, but the flow features, and their variation with axial wavenumber, were
essentially unchanged. It was not possible with our machine memory limitations to
conduct tests with twice the flow domain in the lateral (y and z) direction while
maintaining the same resolution. However, we note that the most energetic region
of the external turbulence is located between about 1 <r < 3, such that the distance
between the most energetic turbulence structures and the centre of the large-scale
vortex measures between 10 % and 25 % of the lateral domain width.

3. Structure of a vortex with external turbulence
Turbulence structures external to a large-scale columnar vortex wrap around the

vortex, forming secondary vortex loops with approximately azimuthal orientation.
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Figure 2. Profile of the initial turbulent kinetic energy, u′2 ≡ u′2
x + u′2

r + u′2
θ , for cases with (a)

fmagn = 0.5 (dashed line) and 1 (solid line) (Cases C and A) and (b) fmagn = 2 (dashed-dotted
line), 3 (dashed line) and 4 (solid line) (Cases D, E and F).
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Figure 3. Iso-surface of vorticity magnitude ω =0.1 for Case A at time t = 100, showing the
external turbulence structures wrapping around the vortex core.

Concurrent with development of these wrapped vortex structures is a temporal
increase in the core size of the external turbulence. The wrapping of the external
turbulent structures around the columnar vortex is examined in the current section
for Case A in table 1 (with fmagn = 1), unless otherwise indicated. In figure 3, we plot
an iso-surface with vorticity magnitude ω = 0.1 illustrating this wrapping process.
The external turbulence loop structures each consist of two ‘legs’ of opposite sign
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Figure 4. Plots showing contours of vorticity components, (a) ωx , (b) ωy , and (c) ωz in a
slice of the vortex in the (x, y)-plane, for Case A at t =100.

azimuthal vorticity that join at the loop ‘head’. These loops are aligned primarily
in the azimuthal direction, but they also have a significant component in the radial
direction which arises from the difference in self-induced velocity between the head
region and the legs of the vortex loops. A detailed experimental study of this process of
entrainment of vortex loops by a columnar vortex is given by Sun & Marshall (2000),
and additional information is given in Marshall & Beninati (2000) and Gossler &
Marshall (2001).

Contours of the different vorticity components are plotted in figure 4 in an x-y
slice of the flow, where the nominal location of the lateral core surface is indicated by
dashed lines. The external turbulence induces waves of various types and wavelengths
on the vortex core (Bandyopadhay et al. 1991; Melander & Hussain 1993a; Marshall
1997; Miyazaki & Hunt 2000). While many different wave forms co-exist, the
predominant wave observed in the present computations is a bending wave, as can
be observed in the contour plots of ωx and ωy in figures 4(a) and 4(b), corresponding
to axial vorticity and positive (negative) radial vorticity in the top (bottom) halves
of the figure, respectively. The axial vorticity (ωx) is observed to oscillate in a wavy
pattern. The ωy vorticity component exhibits strong regions of alternating sign at the
vortex centre, corresponding to regions where the vortex bending wave crosses the
(x, y)-plane. A contour plot of the z-component of vorticity, corresponding to the
positive (negative) azimuthal vorticity in the top (bottom) of the plane, is given in
figure 4(c). The ωz component has greatest absolute value in the turbulent structures
located just outside of the vortex core. Also evident in figure 4(c) are long streaks of
azimuthal vorticity elongated in the x-direction located just outside the vortex core
lateral boundary. These streaks appear to be caused by flattening of the cores of
external vortex structures as they are entrained toward the vortex core.

Mean turbulence quantities were obtained by a two-step spatial averaging process.
The quantities were first averaged in the axial direction to generate an intermediate
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mean, which for some quantity f is given by

f (y, z) ≡ 1

Nx

Nx∑
i=1

f (xi, y, z). (4)

The intermediate averages are then interpolated onto a polar coordinate grid, using
60 evenly spaced bins in the radial direction, and a second azimuthal averaging step
is performed to yield the final mean quantity as a function of radial position

f (r) ≡ 1

Nθ

Nθ∑
j=1

f (r, θj ). (5)

In these averages, Nx and Nθ denote the number of points in the axial and azimuthal
directions, which are set equal to 128 and 64, respectively, in the current computations.

The parts of the turbulent kinetic energy generated by the three velocity compon-
ents, u′2

x , u′2
r , and u′2

θ , are plotted in figure 5(a) for time t = 100, and the corresponding

enstrophy perturbations, ω′2
x , ω′2

r , and ω′2
θ , are plotted in figure 5(b). The azimuthally

oriented external vortex structures (lying approximately in the interval 1 <r < 3)
induce velocity perturbations primarily in the axial and radial directions, with rela-
tively small velocity perturbations in the azimuthal direction. The bending wave on
the central vortex core induces velocity perturbations primarily in the vortex cross-
plane (the azimuthal and radial directions), with relatively small induced velocity
perturbations in the axial direction. Correspondingly, the axial velocity perturbations
and azimuthal vorticity perturbations are strongest in a ring surrounding the vortex
core. The radial velocity perturbations exhibit a double-hump, with peaks both in
the vortex centre (due to the bending wave on the core) and in a ring surrounding
the vortex core (due to the external turbulence). The outer maximum in the radial
velocity perturbations is observed to occur at a radius of about r ∼= 2, whereas the
peak in axial velocity perturbations occurs at a radius of about r ∼= 1.2. The azimuthal
velocity perturbations and the radial and axial vorticity perturbations are strongest
near the vortex centre, due to the vortex bending waves.
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The u′
ru

′
θ component of the Reynolds shear stress is responsible for outward

momentum transport from the vortex core. Both a contour plot of u′
ru

′
θ (with axial

averaging only) and a line plot of u′
ru

′
θ are shown in figure 6. The contour plot exhibits

a complex pattern of alternating positive and negative values of u′
ru

′
θ near the vortex

centre, associated with the bending wave on the central vortex core. These positive
and negative regions approximately cancel each other out when azimuthally averaged,
as indicated by the comparatively small values of u′

ru
′
θ within the vortex centre in

figure 6(b). External to the vortex core there exists a large swath with positive values
of u′

ru
′
θ due to the mixing induced by the external turbulence structures.

The spectral distribution of the turbulent velocity and vorticity fields is shown in
figure 7. In this figure we plot the partial sum of the high-pass-filtered velocity and
vorticity components with different values of the cut-off axial wavenumber kcut over
a slice of the flow in the (x, y)-plane, given by û2

i,> ≡
∑

k>kcut
û2

i and ω̂2
i,> ≡

∑
k>kcut

ω̂2
i .

The plots utilize values of the cutoff axial wavenumbers of 1, 2, 4 and 6, corresponding
to perturbations with wavelength ranging from the vortex core diameter to about six
times the core diameter, which is roughly the same as the axial domain size. The
various peaks and valleys in these plots correspond to the different flow features
discussed in the preceding paragraphs. We focus the present discussion on the spectral
content of the various flow features.

The two largest peaks in ω̂2
z,>, centred at about y = ±1.5, correspond to the external

azimuthally aligned turbulence structures, which in turn induce velocity perturbations
corresponding to the two large peaks in û2

x,> centred at about the same radius and

the smaller peaks in û2
y,> centred at about y = ±2.4. The azimuthal vorticity within

this external region is dominated by fluctuations with axial wavenumber k � 2, with
roughly half of the enstrophy ω̂2

z,> in the interval 2 � k � 4. By contrast, about half

of the kinetic energy due to axial velocity fluctuations, û2
x,>, in this region have axial

wavenumber in the interval 1 � k � 2, with most of the remaining kinetic energy in the
interval 2 � k � 4. The radial and axial vorticity components exhibit peaks at about
y = ±0.5 and y = 0, respectively, which are due to the presence of the central bending
wave on the vortex core. Most of the enstrophy within these peaks is contained in the
wavenumber interval 2 � k � 4, and we observe significantly less high-wavenumber
enstrophy (e.g. with k > 6) here compared to the turbulence in the region external
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to the vortex core. This wavenumber interval corresponds to waves with length of
about 1.5 to 3 times the vortex core diameter, which is in good agreement with the
experimental flow visualization results of Bandyopadhyay et al. (1991), who report
various wave forms on the vortex core in the presence of external turbulence with
lengths ranging from 1.06 to 3.1 times the core diameter.

An estimate of the amplitude variation with time of the central bending wave can
be obtained by plotting ω̂2

x,> versus y with kcut = 1 over a time interval, as shown in
figure 8 at times t = 40, 80 and 120. The bending wave amplitude corresponds to the
radius at which this curve attains a maximum (or half the distance between the two
peaks). Contours of ωx for the same three times are shown on the left-hand side plots
in the figure, and line plots of ω̂2

x,> versus y with kcut = 1 are shown on the right-hand
side at the corresponding times. The distances between the peaks in this curve have
values 0.5, 0.7, and 0.6 at times 40, 80, and 120, respectively, corresponding to a mean
bending wave amplitude of about 0.3. The amplitude of this vortex bending wave
appears to remain approximately constant after an initial transient growth period,
which is consistent with the RDT predictions of Miyazaki & Hunt (2000).

4. Vorticity transport in external turbulence
The intensity of the external turbulence field is governed by several different physical

processes. For instance, we have noted with reference to figure 3 that as the external
turbulence loops become oriented in approximately the azimuthal direction, their self-
induced velocity acts to entrain them into the vortex core. Different parts of the vortex
loops have a larger self-induced velocity than other parts, and hence advect toward
the large-scale vortex core faster than other parts of the loop. This difference leads
to stretching of the vortex loops due to the differences in mean azimuthal velocity
with radial position. Regions of strong enstrophy production rate, S = ωiωjDij , where
Dij are components of the rate-of-deformation tensor, are plotted using shading in
figure 9 for a slice of the flow field in the (x, y)-plane at t = 100, with grey shading
indicating regions where S > 0.0004 and black shading indicating regions where
S < −0.0004. Contour lines of ωy , corresponding to the positive (negative) radial vorti-
city component above (below) the x-axis, are indicated on the same figure using solid
(dashed) lines for positive (negative) contours. The strongest enstrophy production
occurs within regions of alternating positive and negative sign within the columnar
vortex, which are generated by the central bending wave on the large-scale vortex
core. Additional regions of (mostly positive) enstrophy generation are found in the
turbulence external to the vortex, which are found to correlate closely to contours of
radial vorticity.

A potential second mechanism for enhancement of the external turbulence is
stripping of vorticity from the large-scale vortex core. This mechanism was observed
to play an important role in the turbulence evolution within the vortex core in the
flow visualization results of Bandyopadhyay et al. (1991) and Sarpkaya & Daly
(1987), the latter of which referred to intermittent ‘bursts’ along the vortex core. A
computational study of vortex stripping was reported by Marshall (1997) using an
axisymmetric computational model with vortex rings surrounding a columnar vortex.
Marshall reports that vortex stripping, typified by a thin ejected vortex sheet from the
large-scale vortex core, occurs only for cases with sufficiently strong external vortex
rings, the critical strength depending on the ring axial separation and radius. For
cases with ring strength below the critical value, a standing wave of variable core area
would be set up on the columnar vortex. Since vorticity stripping is accompanied by
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Figure 8. Contour plots of ωx (on the left) and corresponding line plots of ω̂2
x,> versus y with

kcut = 1 (on the right) for Case A at times (a) t = 40, (b) t = 80, and (c) t = 120. The distance
between the peaks in the figures on the right-hand side is approximately equal to twice the
amplitude of the bending wave on the central vortex core.

exchange of fluid from within the large-scale vortex core with that originating outside
the core, we examine the extent of vorticity stripping by computing the advection of
a passive scalar initiated within the vortex core. The scalar is evolved by the spectral
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advection equation, given by

ĉn+1 = ĉn − �tk ·
[

3
2
(ĉu)n − 1

2
(ĉu)n−1

]
, (6)

where c is the scalar concentration, a hat denotes Fourier transform, and the second-
order Adams–Bashforth method is used for time stepping. In various tests, the scalar
is observed to advect with the fluid flow with no dissipation and no detectible spurious
oscillations. The scalar concentration field is initiated within the vortex core at the
end of the initialization run (following Step 8, described in § 2) using the distribution

c(r) = 1 − exp

[
− ln(2)e2

3r
exp

(
1

1.5r − 1

)]
. (7)

This distribution is similar to a top-hat function with radius r = 0.5, but has somewhat
more gradual variation near the sides to avoid Gibbs oscillations. Plots of the passive
scalar at different times for cases with moderate turbulence initial intensity (e.g. Cases
A–D) exhibit waves of various types on the vortex core, but no ejection of the core
fluid out into the external flow, indicating that vortex stripping does not have a
significant effect on the external turbulence for these cases. (Cases with strong initial
turbulence are examined later in § 6.) One reason for the difference between this result
and the observations of Bandyopadhyay et al. (1991) and Sarpkaya & Daly (1987)
may be that the vortex Reynolds number (based on the definition ReV ≡ Γ/ν used
in the current paper) is in the range 10 000–60 000 for Sarpkaya & Daly (1987) and
94 000–157 000 for Bandyopadhyay et al. (1991), which in both cases is substantially
higher than in the current paper (for which ReV =3000). Also, Sarpkaya & Daly’s
work was for a vortex pair, for which Devenport, Zsolodos & Vogel (1997) and
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Risso et al. (1997) report that stretching from the opposing vortex of the pair can
substantially enhance the vortex turbulence.

A variety of processes act to suppress the external turbulence, including viscous
diffusion, merger of external vortex structures of the same-sign azimuthal vorticity,
and outward propagation of pairs of vortex structures with opposite-sign azimuthal
vorticity arising from two different vortex loops. The latter process increases dispersion
of turbulence and opposes the vortex loop entrainment process. Of these various
processes, the average core size of individual external vortex structures in the current
computations appears to be most affected by stretching and viscous diffusion. If R

denotes the average radial position of a vortex loop located outside of the columnar
vortex core, we estimate that the difference in radial distance between the ‘head’
region and the legs of a vortex loop is approximately �R ∼= (πR2/δ)(ΓL/Γ ), where δ

is the average distance between the legs of a vortex loop and ΓL denotes the typical
strength of an external vortex loop (Beninati 2004). The associated stretching rate of
the vortex loop is S ∼= Γ �R/4π2R2. Using the classical Burger’s (1948) vortex solution
for an equilibrium stretched vortex, the last two results yield an expression for the
typical core radius, aL, of an external turbulent vortex structure as

aL =
√

2ν/S ∼=
[
8πνRδ

ΓL

]1/2

. (8)

Assuming now that δ and R are proportional to aL and core radius a of the columnar
vortex, respectively, such that δ = c1aL and R = c2a, and writing the circulation in
terms of the maximum axial vorticity ωx,max in the columnar vortex and the maxi-
mum azimuthal vorticity ωθ,max in the external turbulence as Γ = πa2ωx,max and
ΓL = πa2

Lωθ,max, the result (8) can be written as

aL

a
∼=

(
C

ReV

ωx,max

ωθ,max

)1/3

, (9)

where C ≡ 8πc1c2 is a constant. Our computational results for Case A at t ∼= 100, for
instance, yield ωx,max/ωθ,max

∼= 5, c1
∼=4, and c2

∼= 2, such that C ∼= 200 and the core
radius of the external turbulence structures is estimated to have equilibrium length
scale aL

∼= 0.7a.

5. Proper-orthogonal decomposition analysis
Proper-orthogonal decomposition (POD) provides a method for extracting the most

energetic modes of a turbulent flow at different wavenumbers (Lumley 1967; Holmes,
Lumley & Berkooz 1996). We employ a simplified POD procedure related to the ‘slice
POD’ approach described by Gamard et al. (2002) with application to a statistically
stationary, spatially developing, axisymmetric jet flow. Since the flow considered in
the current study is periodic in the axial direction and decaying in time, we evaluate
the POD using a fixed time and the Fourier-transformed velocity field in the axial
and azimuthal directions. The slice POD is obtained by expanding a scalar function
u(t, r; m, k) about a set of orthogonal eigenfunctions φ(n)(t, r; m, k) as

u(t, r; m, k) =

∞∑
n=1

an(t; m, k)φ(n)(t, r; m, k), (10)

where m and k represent the azimuthal and axial wavenumbers, respectively, and u

denotes the Fourier transform in the (θ, x)-plane of a scalar function or the component
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of a vector. The integral equation for the POD eigenfunctions is given by (Gamard
et al. 2002)

2π

∫ ∞

0

R(t, r, r ′; m, k)φ(n)(t, r ′; m, k)r ′ dr ′ = λ(n)φ(n)(t, r; m, k), (11)

where R(t, r, r ′; m, k) ≡ u(t, r; m, k)u(t, r ′; m, k) and λ(n) are the POD eigenvalues. It is
convenient for numerical solution of (11) to make the kernel symmetric by defining
new eigenfunctions ψ (n) ≡ r1/2φ(n), such that

2π

∫ ∞

0

[
r1/2R(t, r, r ′; m, k)(r ′)1/2

]
ψ (n)(t, r ′; m, k) dr ′ = λ(n)ψ (n)(t, r; m, k). (12)

The POD provides a method to compare the energy contained in different functions
describing the turbulent flow by comparing the first eigenvalue, or the sum of the
first few eigenvalues, for the corresponding m and k values. The POD eigenvalues
are computed in the current computations by first interpolating the computational
velocity and vorticity fields from the original Cartesian grid to a cylindrical polar
grid, taking the discrete Fourier transform in the azimuthal and axial directions,
discretizing the integral over r in (12), and solving for the first few eigenvalues of the
resulting algebraic eigenvalue problem for each m and k value using the DSYEVX
subroutine in the LAPACK package.

We utilize the POD method by examining the spectral content of the turbulence and
the vortex response for a specific case with external turbulence magnification factor
fmagn =1 (Case A) by plotting the POD eigenvalues for different values of the axial and
azimuthal wavenumbers, k and m, respectively. Unlike the usual Fourier spectrum, the
POD eigenvalue contains spectral information from the entire flow, but weights that
information based on the most energetic regions of the flow. By summing the POD
eigenvalues over either the axial or azimuthal wavenumbers, we can examine how the
energy is distributed with regard to the other wavenumber. For example, the POD
eigenvalues of the radial and azimuthal vorticity components for the turbulent vortex
are summed over all azimuthal wavenumbers, e.g. λ̄1(k) ≡

∑
m λωθ

(k, m), and plotted as
a function of axial wavenumber in figure 10. Such plots provide a concise method for
interpreting the spectral content of the different components of the vorticity field. For
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instance, in figure 10(a) we see that the radial and azimuthal vorticity are contained
mostly in turbulent structures with axial wavenumber |k| � 10, peaking at an axial
wavenumber of about 3. In figure 10(b), these same vorticity components are summed
over all axial wavenumbers, e.g. λ̄2(m) ≡

∑
k λωθ

(k, m), and plotted as a function of
azimuthal wavenumber. The radial vorticity has peaks at m = 3 and m = 5, and then
decays significantly for high azimuthal wavenumbers. Most of the contributions to
the azimuthal vorticity components are in the range m < 10, including large values
for m =0 and m = 1, corresponding to nearly axisymmetric external turbulence and
the bending wave on the central vortex core, respectively.

The POD eigenvalues for the radial and azimuthal vorticity components are plotted
as a function of wavenumbers m and k in figure 11. A local maximum in the radial
vorticity occurs for (m, k) = (5, 3), which is related to the spots of radial vorticity
near the centre of the vortex core caused by the central bending wave, as shown in
figure 4(b). The azimuthal vorticity eigenvalue (associated primarily with the external
turbulence) has large values in a broader region corresponding to 2 � k � 4 and
0 � m � 3.

6. Effect of external turbulence initial condition
The external turbulence can be characterized by an initial length scale and kinetic

energy distribution. In this section, we compare computations in which the initial
length scale and turbulent kinetic energy profile are different to examine the effect
of the turbulence initial condition on the turbulence state and the turbulence–vortex
interaction.

6.1. Effect of initial turbulence length scale

The first set of computations compares two cases in which the initial homogeneous
turbulence has very different length scales (Cases A and B), both with magnification
factor fmagn = 1. In Case A, the truncation wavenumbers k1 and k2 in Step 1 of the
initiation procedure are set to 10 and 30, respectively, whereas in Case B we examine
larger-scale initial perturbations with the wavenumber truncation limits 5 and 10, res-
pectively. The initial root-mean-square velocity perturbation amplitude is set the same
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for both cases. Contour plots showing the azimuthal vorticity field both for a time
corresponding to the end of Step 2 of the initialization procedure described in § 2
(t = 0 of the initialization run) and at t = 100 (of the final run) are shown in figure 12.
The initial length scale is clearly much shorter for Case A than it is for Case B;
however, by time t = 100 the turbulence length scale appears visually to be similar
for the two cases.

A more quantitative method of examining the variation in axial length scales of the
external turbulence is to plot the enstrophy component ω′2

θ associated with the azi-
muthal vorticity as a function of radius, as shown in figure 13. Figures 13(a) and 13(b)
correspond to times tinit = 0 and 20 of the initialization run and figures 13(c) and 13(d)
correspond to times t = 0 and 100 of the final run. In figure 13(a), the computation
with smaller axial length scales (and hence larger wavenumber range) has much
larger azimuthal vorticity magnitudes in order to achieve the same velocity fluctuation
magnitudes as the case with larger axial length scales. The magnitude of ω′2

θ outside
of the vortex core differs in the two cases by a factor of about 500 in figure 13(a). In
figure 13(b), the strength of the vortex structures in Case A has decreased markedly.
By the end of the initiation run (figure 13c), the enstrophy far away from the vortex
core is similar for the two cases, due to decay of much of the initial high-wavenumber
components of the turbulent flow. By time t =100 of the final run (figure 13d), the
enstrophy profiles for the two cases are nearly identical.

6.2. Effect of initial turbulence intensity

We have performed computations with several different values of the external turbu-
lence intensity by adjusting the turbulence magnification value fmagn in Step 6 of the
initiation procedure, with all other features of the initial condition the same. The
qualitative nature of the turbulence–vortex interaction is the same for all cases ex-
amined, but the rate at which the flow advances through the turbulence decay process
differs. In figure 14 we compare enstrophy ω′2

θ associated with the azimuthal vorticity
perturbation for cases with fmagn = 0.5 and 2 (Cases C and D), evaluated at times t = 0,

40, 80, 120 and 160. Since ω′2
θ is dominated by the wrapped external vortex structures,

the plot of ω′2
θ versus rexhibits a peak in the interval 1 <r < 2. A second peak in ω′2

θ

occurs near the origin due to the bending wave on the large-scale vortex core.
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Case Ex Er Eθ D Rx N

C −1.29 −1.14 −1.03 −0.99 −0.61 −1.38
D −1.40 −1.43 −1.31 −1.29 −0.74 −1.93

Table 2. Slopes for various integral quantities when plotted versus time on a log–log plot,
for Cases C and D.

At the initial time, all of the different cases exhibit similar ω′2
θ profiles, with the

maximum values scaling as f 2
magn, such that the peak value for the fmagn = 2 case

is about 16 times the peak value for the fmagn =0.5 case. The value of ω′2
θ decays

with time for both cases. In order to quantify the vorticity decay in time, we have
integrated each component of the enstrophy over the vortex cross-section to form the
integral enstrophy measures

Ex ≡ 2π

∫ 2π

0

ω′2
x r dr, Er ≡ 2π

∫ 2π

0

ω′2
r r dr, Eθ ≡ 2π

∫ 2π

0

ω′2
θ r dr. (13)

These enstrophy measures are observed to decay linearly in time on a log–log plot
(figure 15), with slope s given in table 2, implying that there exists a power-law decay
in time of the form Eθ (t) = Eθ (0)t−s (and similarly for the other quantities listed in
table 2). We also observe that the integral over the dissipation rate, the energy associ-
ated with the axial velocity component, and the enstrophy production rate, given by

D ≡ 2π

∫ 2π

0

2νDijDij r dr, Rx ≡ 2π

∫ 2π

0

u′2
x r dr, N ≡ 2π

∫ 2π

0

ωiDijωj r dr, (14)

decay linearly in time when plotted on a log–log plot.
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Some of the quantities in (13) and (14) can be related using the global kinetic
energy conservation law for flow in a periodic space, given by (Frisch 1995)

d

dt

〈
1

2
q2

〉
= −2ν〈DijDij 〉 = −ν〈ω2〉, (15)

where q2 is the velocity magnitude squared and angle brackets denote an average
over the flow domain. Using the Reynolds decomposition, (15) can be rewritten as

d

dt
(R + Rr + Rθ + Rx) = −2D = −ν(E + Er + Eθ + Ex), (16)

where R and E are the integrals of the mean velocity magnitude squared, ū2, and
the mean vorticity magnitude squared, ω̄2, respectively, over the vortex cross-section.
While Er and Ex are dominated by perturbations on the large-scale vortex, Eθ and
D are dominated by the external turbulence. It is therefore of interest to note the
close correspondence in the slopes given in table 2 for Eθ and D. Equation (16) also
suggests that if s is the slope of the enstrophy decay curve, then Rx should decay with
slope s −1; however, table 2 gives a somewhat larger value for the decay slope of this
term. We note that the other energy terms, R, Rr and Rθ , do not appear to decay with
time via a power-law expression, so it is difficult to estimate the effect of these terms.

The time variation of length scale of the external turbulence can be examined
by plotting the POD eigenvalues of the azimuthal vorticity component, summed
over all azimuthal wavenumbers, as a function of the axial wavenumber, which
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Figure 17. Contour plots of the passive scalar concentration for Case E at times
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is given in figure 16 for a case with fmagn = 2 (Case D). A gradual decrease in
magnitude of the POD eigenvalue is observed, associated with decay of Eθ in time.
As would be expected, we also observe that enstrophy at higher wavenumbers dies
out more quickly, leading to a progressively narrowing band of axial wavenumbers
with significant POD eigenvalues in figure 16.

6.3. Turbulence-induced vortex breakup

Sufficient magnification of the external turbulence can lead to breakup of the large-
scale vortex core. This breakup process is illustrated for a case with fmagn =3 (Case E)
by plotting contours of the passive scalar concentration over a time series in figure 17,
where the passive scalar is used to identify fluid originating within the vortex core.
We first observe waviness of the core boundary for short time, followed by ejection of
the core fluid via a vorticity stripping process (figure 17c). As the external turbulence
continues to entrain into the core, we observe large-scale breakup of the core fluid
into multiple pieces. As noted previously, it is likely that the vorticity stripping process
would be dominant for a longer period of time and for a wider range of external
turbulence magnitudes for cases at higher Reynolds numbers.

The dependence of the vortex breakup on the value of fmagn is examined in figure 18
by plotting the contours of the passive scalar used to mark the core fluid in a slice
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of the flow in the (x, y)-plane for fmagn = 2, 3 and 4 (Cases D–F) at time t = 20.
For fmagn =2, the passive scalar has a wavy shape, but it maintains a connected
tube-like form within the core. For fmagn = 3, the passive scalar both begins to break
up into multiple segments and exhibits shedding in thin sheets from the central core.
For fmagn = 4, we observe breakup of the passive scalar into numerous segments and
numerous ejections of the scalar in thin sheets into the external fluid all around the
lateral surface of the larger segments.

7. Conclusions
This paper reports results of a study using spectral DNS and proper-orthogonal

decomposition to examine the interaction between an initially columnar vortex and
external turbulence. Although the computations are performed in a domain with
periodic boundary conditions, the lateral spacing between the vortices is taken as
large enough to approximate an isolated vortex. A multi-step initialization procedure
is employed in order to develop an initial turbulence field that possesses the wrapped,
nearly axisymmetric form characteristic of vortex turbulence. Cases with various
values of the external turbulence intensity and length scale are examined.

The external turbulence wraps around the large-scale vortex and forms loop
structures that are oriented primarily in the azimuthal direction. Different parts of
these loop structures become entrained into the vortex core at different rates, which
gives rise to a non-zero radial vorticity component, and associated vortex stretching,
in the external turbulence. As the external vortex loops advect close to the large-scale
vortex core, the cross-section of the vortex loops becomes elongated in the axial
direction. The external turbulence exhibits a broad band of axial wavelengths, which
grows progressively more focused on the larger wavelengths as time progresses. For
most of the current computations, the enstrophy within the external turbulence is
contained in axial wavelengths greater than about half the large-scale vortex core
diameter, with the mode with greatest enstrophy corresponding to about twice the core
diameter.

The large-scale vortex responds to external turbulence of moderate strength by
formation of a wide variety of wave forms; however, of these the bending wave is
the most prominent. The turbulent kinetic energy and enstrophy profiles thus exhibit
two peaks: one within the external turbulence at about 1–3 core diameters from
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the vortex centre and one at the large-scale vortex centre, where the latter is caused
by buffeting of the large-scale vortex by the external turbulence. Once the vortex
bending wave forms, its amplitude does not seem to continue growing in time. The
dominant wavelength of the bending wave appears to be about twice the vortex core
diameter, which compares well with the experimental flow visualization results of
Bandyopadhyay et al. (1991). There appears to be little stripping of vorticity from the
vortex core for the relatively low Reynolds number used in the current computations
for initial turbulence of moderate strength.

Computations performed with different initial turbulence length scales indicate
that the turbulence approaches a similar length scale as the computation progresses.
Computations are performed with a wide range of different turbulence intensities.
For all cases with moderate turbulence strength, the different components of the
turbulence enstrophy, the dissipation rate, the enstrophy production rate, and the
axial turbulence kinetic energy are observed to decrease in time via a power-law
expression, where the power-law exponent depends only slightly on the turbulence
intensity. At sufficiently high initial turbulence intensity, the external turbulence is
observed to induce breakup of the large-scale vortex core. This breakup is initiated by
stripping of vorticity from the lateral surface of the vortex core, followed by wholesale
breakup of the core.

A number of aspects of the turbulent vortex problem require further clarification
in a future study. The effect of significantly higher Reynolds number is of particular
interest, since experimental data for high-Reynolds-number vortices immersed in
turbulent surroundings indicate the presence of significant stripping of the outer
parts of the vortex, which are ejected out into the external turbulence. This stripping
mechanism was not prominent in the current computations, except just prior to
breakup of the large-scale vortex. A second matter for future study is the effect of
straining in the vortex cross-sectional plane on the turbulence, as might be caused by
nearby parallel large-scale vortices. Whereas the present computations exhibit steadily
decaying turbulent energy, the presence of an imposed straining might introduce
sufficient stretching of the turbulence structures to halt the turbulence decay. This
supposition is supported by the significant increase in turbulence intensity for a vortex
pair (compared to a single vortex) observed in the experiments of Devenport et al.
(1997), as well as by our own preliminary computations.

Note Added in Proof: After acceptance of this paper, we became aware of the
interesting study by Pradeep & Hussain (2004), which showed that periodic lateral
boundary conditions used in flows with non-zero vortex circulation can, at sufficiently
high Reynolds numbers, give rise to a centrifugal instability that for turbulence–
vortex interaction studies leads to artificial growth of the turbulence external to the
vortex. In preliminary computations with domain spanning the interval (−π, π) in
the y- and z-directions, we did indeed observe spurious turbulence growth of the
type described by Pradeep & Hussain. However, when the domain size is increased
to the value (−2π, 2π) in the y- and z-directions used in the current paper, such
that the vortex occupies only 0.5% of the domain cross-sectional area, the external
turbulence monotonically decays according to a power law (figure 15) over the time
interval examined in the computations and no spurious turbulence growth is observed.
We therefore feel that the computations presented in the paper are not significantly
influenced by the numerical instability described by Pradeep and Hussain, although
we concur with their recommendation for use of alternative numerical methods for
future studies.
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